行星也是研究人员首次发现的围绕类似太阳的恒星进行轨道旋转的可居住行星。研究人员发现,这颗行星的恒星距离地球有600光年之远,朝向天琴座和天鹅座星群。其为g5恒星,体积较大,其半径仅比太阳小一点。但它所发出的光度要比太阳稍暗25。
n5恒星旋转,其轨道周期为290天,距离恒星的距离要比地球距离太阳的距离近15,这也是该行星上气候比较温和的原因。该行星在行星的可居住区域中心进行轨道运动,研究人员认为在这里极有可能会有液体水资源的存在。众所周知,液体水资源对于人类的生存十分重要,因此,综合该行星的情况,它也许不仅是适宜人类居住,很可能上面早已有生命的存在。且该外系可居住行星是迄今为止在任何行星可居住区域中发现的最小半径行星,其
半径仅比地球大24倍。研究人员已经将其归类为外系行星“超级地球”等级中了。
和李欢这种以单人之力开辟空间通道,去到另一个世界不同,nasa更善于在普通的领域之中开拓新视界,而且当发现那个超级地球之后,他们曾经进行了几次试验。
花国宇航局的好奇号火星车已于花国东部时间2012年8月6日1时31分成功登陆火星,为的就是模拟登陆超级地球。
该火星车是于2011年11月从肯尼迪航天中心升空的,用于探索火星是否存在适宜生命存在的环境。它与2004年登陆火星的“机遇”号和“勇气”号火星车相比,以放射性钚238为动力的“好奇”号携带的探测设备更多、更先进,在火星表面的连续行驶能力也更强。“好奇”号的项目成本最初预计约为10亿美元,但它最终却花费了高达25亿美元,是迄今最昂贵的火星探测项目。
由于“好奇”号火星车将使用数台高能耗的仪器,往往会有多台仪器同时开机运行,因此不能依靠太阳能发电作为火星车的能源。“好奇”号火星车使用的是“放射性同位素热发电机”(radioie ther)电能。其原理是,通过热电偶装置把放射性同位素钚238衰变产生的热直接转换为直流电来火星车的行驶和各项仪器设备使用。人造同位素钚238的半衰期仅为88年,这意味着它的放射性衰减之快可以让它非常炽热。钚238释放的是阿尔法射线,很容易被阻挡。因为rtg没有活动的部件,所以很可靠,并且放射性材料能够持续发热很多年。由于其质量高达900千克,所以以前的办法都不能保证“好奇”号安全着陆。工程师们设计了“空中吊车”这个向火星表面投放重型科学仪器的全新方式。
“好奇”号是花国第3代火星车,有6个轮子,体积与小汽车相当;质量将近900千克,是第2代火星车“机遇”号和“勇气”号的5倍多;长度是第2代火星车的2倍多;搭载10套科学探测仪器,桅杆上安装高分辨率相机和激光器,能够在最远7米处探测目标物体;使用核能在火星表面漫游和工作;可展开为期一个火星年(约687个地球日)的探测。
国外媒体报道,花国国家航空航天局下一步火星探索战略将把火星岩石带回地球
进行分析,以寻找这颗红色星球上过去存在的生命。在2013年9月25日花国宇航局火星计划规划组(g)公布的报告中规划了一系列火星探索目标,科学家可以在地球上对控制火星着陆器采集岩石样本。预计在2014年初将宣布火星岩石采集返回计划的探索路线。
有科学家提出在火星岩石采集飞船接近地球时派遣猎户座宇宙飞船搭载宇航员登上携带岩石的火星返回探测器,确保火星岩石处于可靠的环境中,不受到地球微生物的影响,最后安全带回地面。当探测器采集火星岩石样本返回时需要确保这些火星岩石被完全包裹住,不仅需防止由于密封不严实造成地球微生物进入到岩石样本中,